Search results

Search for "nickel (II)" in Full Text gives 8 result(s) in Beilstein Journal of Nanotechnology.

Evaluation of electrosynthesized reduced graphene oxide–Ni/Fe/Co-based (oxy)hydroxide catalysts towards the oxygen evolution reaction

  • Karolina Cysewska,
  • Marcin Łapiński,
  • Marcin Zając,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2023, 14, 420–433, doi:10.3762/bjnano.14.34

Graphical Abstract
  • was the structure of NiFe and the electroactive surface area of GO. Experimental Fabrication of the catalysts NiFe and CoNiFe oxides/(oxy)hydroxides were synthesized in a one-step process by electrodeposition at −1.1 V vs Ag/AgCl in an aqueous solution of 4 mM nickel(II) nitrate hexahydrate (Ni(NO3)2
PDF
Album
Supp Info
Full Research Paper
Published 29 Mar 2023

A Au/CuNiCoS4/p-Si photodiode: electrical and morphological characterization

  • Adem Koçyiğit,
  • Adem Sarılmaz,
  • Teoman Öztürk,
  • Faruk Ozel and
  • Murat Yıldırım

Beilstein J. Nanotechnol. 2021, 12, 984–994, doi:10.3762/bjnano.12.74

Graphical Abstract
  • nanocrystals. Also, I–V and C–V measurements were performed to determine the photodiode and capacitance characteristics of the Au/CuNiCoS4/p-Si devices. Experimental Materials Copper(II) acetate (CuAc2), nickel(II) acetate (NiAc2), cobalt acetate (CoAc2), trioctylphosphine oxide (TOPO), 1-dodecanethiol (DDT
PDF
Album
Full Research Paper
Published 02 Sep 2021

Fusion of purple membranes triggered by immobilization on carbon nanomembranes

  • René Riedel,
  • Natalie Frese,
  • Fang Yang,
  • Martin Wortmann,
  • Raphael Dalpke,
  • Daniel Rhinow,
  • Norbert Hampp and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2021, 12, 93–101, doi:10.3762/bjnano.12.8

Graphical Abstract
  • is essentially one monolayer of PM patches on the CNM, but the coverage is less than 100% and in some regions irregularly arranged PM patches overlap. Immobilization of PM was achieved by complex formation of nickel(II) nitrilotriacetic acid (Ni-NTA), coupled to the NBPT CNM, with the C-terminal
PDF
Album
Supp Info
Full Research Paper
Published 22 Jan 2021

Unravelling the interfacial interaction in mesoporous SiO2@nickel phyllosilicate/TiO2 core–shell nanostructures for photocatalytic activity

  • Bridget K. Mutuma,
  • Xiluva Mathebula,
  • Isaac Nongwe,
  • Bonakele P. Mtolo,
  • Boitumelo J. Matsoso,
  • Rudolph Erasmus,
  • Zikhona Tetana and
  • Neil J. Coville

Beilstein J. Nanotechnol. 2020, 11, 1834–1846, doi:10.3762/bjnano.11.165

Graphical Abstract
  • NiPS nickel phyllosilicate structure Si2Ni3O5(OH)4 [42][43]. Basically, NiPS is formed upon the precipitation of nickel species onto a silica surface after basification of a nickel(II) solution [44]. Depending on the deposition-precipitation time, the molar ratio between urea and nickel precursor, and
  • the silica surface area, either nickel hydroxide or nickel phyllosilicate can be obtained [34]. Nickel hydroxide is formed when precipitation takes place due to supersaturation [32]. In contrast, precipitation of nickel phyllosilicate occurs only due to the interaction between the nickel(II) species
PDF
Album
Supp Info
Full Research Paper
Published 09 Dec 2020

Anchoring of a dye precursor on NiO(001) studied by non-contact atomic force microscopy

  • Sara Freund,
  • Antoine Hinaut,
  • Nathalie Marinakis,
  • Edwin C. Constable,
  • Ernst Meyer,
  • Catherine E. Housecroft and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2018, 9, 242–249, doi:10.3762/bjnano.9.26

Graphical Abstract
  • that they are lying flat on the surface in a trans-conformation. Within the limits of our Kelvin probe microscopy setup a charge transfer from NiO to the molecular layer of 0.3 electrons per molecules was observed only in the areas where the molecules are closed packed. Keywords: metal oxide; nickel
  • (II) oxide (NiO); non-contact atomic force microscopy; p-type semiconductor; sub-molecular resolution; Introduction Inorganic substrates functionalized with organic molecules are nowadays highly regarded materials for emerging hybrid technologies including molecular electronics, photocatalysts or
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2018

Fabrication of CeO2–MOx (M = Cu, Co, Ni) composite yolk–shell nanospheres with enhanced catalytic properties for CO oxidation

  • Ling Liu,
  • Jingjing Shi,
  • Hongxia Cao,
  • Ruiyu Wang and
  • Ziwu Liu

Beilstein J. Nanotechnol. 2017, 8, 2425–2437, doi:10.3762/bjnano.8.241

Graphical Abstract
  • nanostructures for a broad range of technical applications. Experimental Materials Cerium(III) nitrate hexahydrate (Ce(NO3)3·6H2O), concentrated nitric acid (HNO3, 68%), diethylene glycol (DEG), acetone, copper(II) acetate monohydrate (Cu(CH3COO)2·H2O), nickel(II) acetate tetrahydrate (Ni(CH3COO)2·4H2O), cobalt
PDF
Album
Full Research Paper
Published 16 Nov 2017

Hydrophilic silver nanoparticles with tunable optical properties: application for the detection of heavy metals in water

  • Paolo Prosposito,
  • Federico Mochi,
  • Erica Ciotta,
  • Mauro Casalboni,
  • Fabio De Matteis,
  • Iole Venditti,
  • Laura Fontana,
  • Giovanna Testa and
  • Ilaria Fratoddi

Beilstein J. Nanotechnol. 2016, 7, 1654–1661, doi:10.3762/bjnano.7.157

Graphical Abstract
  • AgNPs show good response to nickel (II) and presented good sensibility properties for the detection of low amount of ions in water in the working range of 1.0–0.1 ppm. Keywords: heavy metal sensor; nickel (II); optical materials; optical sensors; silver nanoparticles; Introduction Nanomaterials have
  • concentration of 1 ppm at room temperature. Our system showed sensibility mainly to nickel (II) ions. For this type of ion, we tested the sensitivity as a function of the ion concentration in the range 1.0–0.1 ppm and we estimated a limit of detection (LOD) of 0.3 ppm. Results and Discussion Silver nanoparticle
PDF
Album
Full Research Paper
Published 09 Nov 2016

Continuous parallel ESI-MS analysis of reactions carried out in a bespoke 3D printed device

  • Jennifer S. Mathieson,
  • Mali H. Rosnes,
  • Victor Sans,
  • Philip J. Kitson and
  • Leroy Cronin

Beilstein J. Nanotechnol. 2013, 4, 285–291, doi:10.3762/bjnano.4.31

Graphical Abstract
  • nickel(II), with the Cu complex ion previously observed by ESI-MS (see Scheme 1) [25]. The ttop and metal-salt solutions are introduced to the device through pumps, via the device inlets, and by changing the pump speed (hence altering the flow rate and reaction conditions inside the device), using an in
PDF
Album
Supp Info
Video
Full Research Paper
Published 29 Apr 2013
Other Beilstein-Institut Open Science Activities